1金相顯微鏡主要用于鑒定和分析金屬內部結構組織,它是金屬學研究金相的重要儀器,是工業部門鑒定產品質量的關鍵設備,顯微鏡回收,該儀器配用攝像裝置,可攝取金相圖譜,并對圖譜進行測量分析,對圖象進行編輯、輸出、存儲、管理等功能。
金相顯微鏡由于易于操作、視場較大、價格相對低廉,直到現在仍然是常規檢驗和研究工作中常使用的儀器。近年來金相顯微鏡的改進主要有以下幾點:
2普遍采用無限遠光學系統
物鏡按照無限遠象距進行設計而不是象常規物鏡那樣按照有限象距進行設計,這種光學系統稱為無限遠色差和象差校正的光學系統或簡稱無限遠光學系統。使用這種光學系統時,當入射光從試樣表面反射再次進入物鏡后,并不收斂而是保持為平行光束,直到通過鏡筒透鏡后才收斂并形成中間象,即一次放大實象,然后才供目鏡再次放大。無限遠光學系統的優點是顯微鏡中的各種光學附件(如暗視場光束分離器、偏振光分離器、用于微差干涉襯度)的棱鏡、檢偏振鏡,以及其它附加濾色鏡等)都可以放置在物鏡凸緣與鏡簡透鏡之間平行光束的空間,由于成象光束沒有受到上述光學附件的干擾,物象的質量不會受到損害,從而簡化了物鏡設計中色差和象差的校正。此外,在無限遠光學系統中,鏡筒長度系數保持為一,無論物鏡與目鏡之間的距離有多遠,也不需要一個固定的中轉透鏡系統。目前,德國的CarlZeiss公司和Leica公司、日本的Nikon公司和Olympus公司生產的金相顯微鏡均已先后采用無限遠光學系統設計
3同焦面性設計
在新型顯微鏡中,更換物鏡及目鏡后不須重新調焦,一般只需略微調節微調旋鈕,就可以使物象準確聚焦。為此,物鏡和目鏡的光學機械尺寸應滿足同焦面性的要求,即:①所有物鏡的共軛距離(即從試樣表面到物鏡初次放大實象象面之間的距離)相等:②所有物鏡初次放大實象到目鏡鏡筒口的距離不變;③所有目鏡的焦面與物鏡初次放大實象的象面重合。同焦面性并不是物鏡或目鏡的一個固有特性,而是在新型顯微鏡的設計中為了便于使用者的操作而采取的一種措施。
對顯微鏡有效放大倍數的再認識顯微鏡的有效放大倍數(M)與物鏡數值孔徑(NA)的關系可以表示為:550NA<M<1100NA>,長期以來,顯微鏡使用者一直遵循這一關系式。但是,VanderVoort在其所著《金相學——原理與實踐》一書中指出,上式是在用理想的眼睛觀察具有理想反差物象的條件下推導出的,因此不要當做教條來遵循。實際上,分辨率不僅與物鏡的分辨率有關,而且還與物象的反差有關。此外,照明條件、放大倍數、物鏡質量,以及觀察條件都會影響物象的反差,因而也會影響分辨率。他指出,顯微鏡保養,為了獲得上線分辨率,下線效放大倍數應當是完美條件下的4倍左右,即M≈2200NA;同時,使用4000×或更高放大倍數的顯微照片也是完全合理的。
4平場消色差物鏡
現今新型顯微鏡已經普遍使用平場消色差物鏡,甚至還可以配置更好的平場復消色差物鏡。老式物鏡初次放大實象的直徑只有18mm~20mm,而平場消色差物鏡則規定高度校正的初次放大平面象的直徑為28mm,即象場面積增大了一倍,并使象場彎曲得到了很好的校正。
5高倍干物鏡
為了便于觀察高倍顯微組織,現今顯微鏡一般均備有高倍干物鏡。例如Nikon公司生產的EPIPHOT300型金相顯微鏡(圖1)配置有放大100×、150×、200×的CFPlanApoEPI型干物鏡,其NA值均為0.95。盡管干物鏡的分辨率明顯低于油浸物鏡(100×油浸物鏡的NA值一般可達1.40),但由于簡化了操作并使試樣免于被油污染,現今已獲得更為廣泛的使用。近年來,Olympus公司生產的GX系列顯微鏡甚至還配置有更高倍數(250×)的干物鏡,盡管其NA值只有0.90,但是用它來進行觀察或拍照,已經很容易使其放大倍數遠超過傳統上使用的數值(1100NA),這進一步證實了以上第1.3小節介紹的觀點是正確的
重慶欣晟泰是您完美的選擇。期待與您的合作
立體顯微鏡的選擇標準
時至今日,立體顯微鏡仍基于提到的技術方法——格里諾或 CMO 原理。
四個事項需要仔細評估:
a)用途是什么?
b)哪種結構需要觀察、記錄或可視化?
c)有多少人在使用顯微鏡?
d)解決方案的可用預算是多少?
一旦上述因素已知,則可以歸結為以下標準。放大倍數、變焦范圍和物場景深和數值孔徑光學質量和工作距離
人體工學
照明
放大倍數、變焦范圍和物場
立體顯微鏡的總放大倍數,是變倍器、物鏡和目鏡的放大倍數的組合。
變倍器或變焦體像放大鏡一樣,變倍器由光學透鏡構成,可以用來改變儀器的放大倍數。改變變倍器的位置,涼山顯微鏡,會改變圖像放大的程度。圖像放大的程度稱為放大倍數。現代立體顯微鏡能夠提供 16 倍放大(只有變焦體),20.5:1 的變焦范圍,其特點是能夠進行可靠測量的機動化或編碼。
接下來,顯微鏡操作,圖像通過目鏡得到進一步放大。為找出目鏡中觀察到的目標的放大程度,用戶必須將變倍器和目鏡的放大倍數相乘。
然而為了保證完整性,提供公式如下:
MTOT VIS 為我們要計算的放大倍數。 VIS 代表“視覺”。
z 是變倍器的等級。
ME 為目鏡的放大倍數。
MO 為主物鏡的放大倍數(當格里諾系統中未使用輔助透鏡時為 1 倍)
物場當從適當的距離向目鏡中觀察、而且瞳孔間距設置正確時,可以看到稱為物場的一個圓形區域。 物場的直徑根據放大倍數而變化。換言之,放大倍數和物場直徑之間存在著數學關系。 10 倍目鏡提供的物場數是23。這意味著變焦體和主物鏡放大 1 倍時,物場大小為23mm。 3 倍放大時物場減少到三分之一,即物場的直徑僅有7.66mm。
景深和數值孔徑
在顯微鏡中,景深往往被視為一種經驗參數。 實際上它是由數值孔徑、分辨率和放大倍數之間的相關性確定的。為了得到良好視覺印象,現代顯微鏡的調整設施會在景深和分辨率——在理論上具有負相關性的兩個參數——之間產生一種上線平衡。
視覺景深的實際價值
在視感景深這個問題上,Max Berek 發表觀點的作者,早在 1927 年他就發表了經過大量實驗得來的結果。Berek 公式給出了視覺景深的實際值,因此今天仍然使用。
以上重慶欣晟泰為您提供參考,歡迎來電垂詢。
您好,歡迎蒞臨禮之鑫,歡迎咨詢...
![]() 觸屏版二維碼 |